Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности PC. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память непосредственно используется процессором при чтении и записи. Во время операций чтения данные в высокоскоростную кэш-память предварительно записываются из оперативной памяти с низким быстродействием, т. е. из DRAM. Еще недавно время доступа динамической оперативной памяти было не менее 60 не (что соответствует тактовой частоте 16 МГц). Для преобразования времени доступа из наносекунд в мегагерцы используется следующая формула:
1/наносекунды х 1000 = МГц.
В свою очередь, обратное вычисление осуществляется с помощью такой формулы:
1/МГц х 1000 = наносекунды.
Когда процессор персонального компьютера работал на тактовой частоте 16 МГц и ниже, DRAM могла быть синхронизирована с системной платой и процессором, поэтому кэш был не нужен. Однако как только тактовая частота процессора поднялась выше 16 МГц, синхронизировать DRAM с процессором стало невозможно, и именно тогда разработчики начали использовать SRAM в персональных компьютерах. Это произошло в 1986-87 годах, когда появились PC с процессором 386, работающим на частотах 16 и 20 МГц. Именно в этих персональных компьютерах впервые нашла применение так называемая кэш-память, т. е. высокоскоростной буфер, построенный на микросхемах SRAM, который непосредственно обменивается данными с процессором. Поскольку быстродействие кэша может быть сравнимо с быстродействием процессора, контроллер кэша может предугадывать потребности процессора в данных и предварительно загружать необходимые данные в высокоскоростную кэш-память. Тогда при выдаче процессором адреса памяти данные могут быть переданы из высокоскоростного кэша, а не из оперативной памяти, быстродействие которой намного ниже.
Эффективность кэш-памяти выражается коэффициентом совпадения, или коэффициентом успеха. Коэффициент совпадения равен отношению количества удачных обращений в кэш к общему количеству обращений. Попадание — это событие, состоящее в том, что необходимые процессору данные предварительно считываются в кэш из оперативной памяти; иначе говоря, в случае попадания процессор может считывать данные из кэшпамяти. Неудачным обращением в кэш считается такое, при котором контроллер кэша не предусмотрел потребности в данных, находящихся по указанному абсолютному адресу. В таком случае необходимые данные не были предварительно считаны в кэш-память, поэтому процессор должен отыскать их в более медленной оперативной памяти, а не в быстродействующем кэше. Когда процессор считывает данные из оперативной памяти, ему приходится какое-то время "ждать", поскольку тактовая частота оперативной памяти значительно ниже, чем процессора. Если процессор со встроенной в кристалл кэш-памятью работает на частоте 2 000 МГц (2 ГГц), то продолжительность цикла процессора и интегральной кэш-памяти в этом случае достигнет 0,5 не, в то время как продолжительность цикла оперативной памяти будет в шесть раз больше, т. е. примерно 3 или 6 не для памяти с удвоенной скоростью передачи данных (Double Data Rate — DDR). Таким образом, тактовая частота памяти будет всего лишь 333 МГц. Следовательно, в том случае, когда процессор с тактовой частотой 2 ГГц считывает данные из оперативной памяти, его